top of page

Publications

  1. Chakraborty S; Makkar M; Viswanatha R; Understanding Nanocrystals’ Dopant Edge X-ray Absorption Fine Structure (XAFS) Spectra: An Iterative Fitting Model. https://doi.org/10.1021/acs.jpcc.3c04078

  2. ​Chakraborty S; Dash G; Mannar S; Maurya KC; Das A; Narasimhan S; Saha B; Viswanatha R; Nonresonant Exciton–Plasmon Interaction in Metal–Chalcogenide (CuxS)/Perovskite (CsPbBr3) Based Colloidal Heterostructure.  https://doi.org/10.1021/acs.jpcc.3c03331

  3. ​Chakraborty S; Mondal P; Makkar M; Moretti L; Cerullo G; Viswanatha R; Transition Metal Doping in CdS Quantum Dots: Diffusion, Magnetism, and Ultrafast Charge Carrier Dynamics. https://doi.org/10.1021/acs.chemmater.2c03776

  4. ​Mondal P; Sathiyamani S; Das S; Viswanatha R; Electronic structure study of dual-doped II–VI semiconductor quantum dots towards single-source white light emission. https://doi.org/10.1039/D3NR03542E

  5. ​Chakraborty S; Grandhi GK, Viswanatha R; Study of the Interface and Radial Dopant Position in Semiconductor Heterostructures Using X-ray Absorption Spectroscopy. https://doi.org/10.1021/acs.jpclett.2c02704

  6. ​Chakraborty S; Mandal P; Viswanatha R; Photoluminescence Quenching in CsPbCl3 upon Fe Doping: Colloidal Synthesis, Structural and Optical Properties. https://doi.org/10.1002/asia.202200478

  7. Chakraborty S; Mandal P; Viswanatha R; Photoluminescence Quenching in CsPbCl3 upon Fe Doping: Colloidal Synthesis, Structural and Optical Properties https://doi.org/10.1002/asia.202200478

  8. Andrea Camellini; Haiguang Zhao; Sergio Brovelli; Viswanatha R; Alberto Vomiero; Margherita Zavelani-Rossi; https://doi.org/10.1149/MA2022-01201104mtgabs

  9. Mannar S; Mandal P; Roy A; Viswanatha R; Experimental Determination of the Molar Absorption Coefficient of Cesium Lead Halide Perovskite Quantum Dots https://doi.org/10.1021/acs.jpclett.2c01198

  10. Pradeep KR; Abinaya Elumalai; Viswanatha R; Effect of Electronic Structure on Delayed Fluorescence in Mn-Doped Perovskite Nanocrystals https://doi.org/10.1021/acs.jpcc.2c01705

  11. Avijit Saha; Gaurav Kumar; Santanu Pradhan; Gauttam Dash; Viswanatha R; Gerasimos Konstantatos; Visible-Blind ZnMgO Colloidal Quantum Dot Downconverters Expand Silicon CMOS Sensors Spectral Coverage into Ultraviolet and Enable UV-Band Discrimination https://doi.org/10.1002/adma.202109498

  12. Mondal P; Viswanatha R; Insights into the Oxidation State of Cu Dopants in II–VI Semiconductor Nanocrystals https://doi.org/10.1021/acs.jpclett.1c04076

  13. Jain P; Mazumder; Pradeep KR; Viswanatha R; Swapan K. Pati; Chandrabhas Narayana; Polaronic Signatures in Doped and Undoped Cesium Lead Halide Perovskite Nanocrystals through a Photoinduced Raman Mode https://doi.org/10.1021/acsami.1c20321

  14. Viswanatha R;Prashant V. Kamat; Anthony K. Cheetham; Tribute to D. D. Sarma https://doi.org/10.1021/acs.jpcc.1c06736

  15. Doped or not doped? Importance of the local structure of Mn (II) in Mn doped perovskite nanocrystals; K.R. Pradeep and Ranjani Viswanatha; Materials Research Bulletin; https://doi.org/10.1016/j.materresbull.2021.111374 (2021)

  16. Is the Lack of Orange Emission Infallible Proof of Unsuccessful Doping of Mn in Quantum Dots?; Payel Mondal, Sowmeya Sathiyamani, Kushagra Gahlot and Ranjani Viswanatha; The Journal of physical chemistry C; https://doi.org/10.1021/acs.jpcc.1c00359 (2021)

  17. Local Surface Plasmon-Assisted Metal Oxide Perovskite Heterostructure for Small Light Emitters; Saptarshi Chakraborty, subhashri mannar, Ranjani Viswanatha; The Journal of physical chemistry C https://doi.org/10.1021/acs.jpcc.1c03577 (2021)

  18. Magneto-Optical Stark Effect in Fe-Doped CdS Nanocrystals; Mahima Makkar, Lakshay Dheer, Anjali Singh,Luca Moretti, Margherita Maiuri, Soumen Ghosh, Giulio Cerullo, Umesh V. Waghmare, Ranjani Viswanatha; ACS Nano letters https://doi.org/10.1021/acs.nanolett.1c00126. (2021)

  19. Ultrafast electron-hole relaxation dynamics in CdS nanocrystals; Mahima Makkar,Luca Moretti, Margherita Maiuri, Giulio Cerullo, Ranjani Viswanatha; Journal of Physics: Materials https://doi.org/10.1088/2515-7639/abf546 (2021)

  20. Cation co-doping into ZnS quantum dots: towards visible light sensing applications,G Krishna Murthy Grandhi, Mahesh Krishna,Payel Mondal and Ranjani Viswanatha, Bulletin of Materials Science volume 43, Article number: 301 (2020) 

  21. Growth mechanistic insights into perovskite nanocrystals: dimensional growth, Prasenjit Mandal,Angira Roy,Subhashri Mannar and Ranjani Viswanatha,  Nanoscale Adv.,,2, 5305-5311 (2020)

  22. Crystal Facet Engineering of CoPt Quantum Dots for Diverse Colloidal Heterostructures, Mahima Makkar,Gautam Prakash and Ranjani Viswanatha.J. Phys. Chem. Lett. , 11, 16, 6742–6748 (2020)

  23. Copper doping in II-VI Semiconductor Nanocrystals: Single Particle Fluorescence Study, Payel Mondal, Saptarshi Chakraborty, G. Krishnamurthy Grandhi and Ranjani Viswanatha, J. Phys. Chem. Lett., 11, 5367 (2020)

  24. Mechanism of Mn emission: Energy transfer vs charge transfer dynamics in Mn-doped quantum dots, Pradeep K. R. and Ranjani Viswanatha, APL Mater., 8, 020901 (2020).

  25. Harvesting Delayed Fluorescence in Perovskite Nanocrystals using Spin Forbidden Mn d states, Pradeep K. R., Debdipto Acharya, Priyanka Jain, Kushagra Gahlot, Anur Yadav, Andrea Camellini, Margherita Zavelani-Rossi, Giulio Cerullo, Chandrabhas Narayana, Shobhana Narasimhan and Ranjani Viswanatha, ACS Ene. Lett., 5, 353 (2020).

  26. Stability of Sn based Inorganic Perovskite Quantum Dots, Pradeep K R., Saptarshi Chakraborty and Ranjani Viswanatha, Mater. Res. Exp., 6, 114004 (2019).

  27. Opportunities and Challenges in Quantum Dots, Pradeep K R and Ranjani Viswanatha, Advances in Physics and Chemistry of Materials (2019).

  28. Thermodynamics of Dual Doping in Quantum Dots, Mahima Makkar, Avijit Saha, Syed Khalid, and Ranjani Viswanatha, J. Phys. Chem. Lett., 10, 1992-1998 (2019)

  29. Transient Species Mediating Energy Transfer to Spin-Forbidden Mn d States in II–VI Semiconductor Quantum Dots, Kushagra Gahlot, Pradeep K.R.Andrea Camellini, Gianluca Sirigu, Giulio Cerullo, Margherita Zavelani-Rossi, Anjali Singh, Umesh V. Waghmare and Ranjani Viswanatha, ACS Energy Lett., 4, 729–735 (2019).

  30. Interface Modeling Leading to Giant Exchange Bias from the CoO/CoFe2O4 Quantum Dot Heterostructure, Avijit Saha, Siddhartha Sohoni and Ranjani Viswanatha, J. Phys. Chem. C, 123, 2421–2427 (2019).

  31. Solvent Adaptive Dynamic Metal‐Organic Soft Hybrid for Imaging and Biological Delivery, Debabrata Samanta, Syamantak Roy, Ranjan Sasmal, Nilanjana Das Saha, Pradeep K R, Ranjani Viswanatha, Sarit S. Agasti and Tapas Kumar Maji, Angew. Chem. Int. Ed., 58, 5008-5012 (2019).

  32. Frontier Challenges in Doping Quantum Dots: Synthesis and Characterization, Mahima Makkar and Ranjani Viswanatha, RSC Adv., 8, 22103-22112 (2018).

  33. Optical Signatures of Impurity–Impurity Interactions in Copper Containing II–VI Alloy Semiconductors, Biswajit Bhattacharyya, Kushagra Gahlot, Ranjani Viswanatha and Anshu Pandey, J. Phys. Chem. Lett., 9, 635–640 (2018).

  34. Low Temperature Dynamics of Surface and Bulk Electronic Structure of Quantum Dots, G. Krishnamurthy Grandhi, Renu Tomar and Ranjani Viswanatha, Materials Research Express, 4, 94001 (2017).

  35. Demystifying Complex Quantum Dot Heterostructures Using Photogenerated Charge Carriers, G. Krishnamurthy Grandhi and Ranjani Viswanatha, J. Phys. Chem. Lett., 8, 2043-2048 (2017).

  36. Magnetism at the Interface of Magnetic Oxide and Non-Magnetic Semiconductor Quantum Dot, Avijit Saha and Ranjani Viswanatha, ACS Nano, 11, 3347-3354 (2017).

  37. Volume and Concentration Scaling of Magnetism in Dilute Magnetic Semiconductor Quantum Dots, Avijit Saha and Ranjani Viswanatha, J. Phys. Chem. C, 121, 21790-21796 (2017).

  38. Diffusion Doping in Quantum Dots: Bond Strength and Diffusivity, Avijit Saha, Mahima Makkar, Amitha Shetty, Kushagra Gahlot, Pavan A. R. and Ranjani Viswanatha, Nanoscale, 9, 2806-2813 (2017).

  39. Recent Advances in Magnetic Ion Doped Semiconductor Quantum Dots, Mahima Makkar and Ranjani Viswanatha, Current Science (Invited Article), 112,1421-1429 (2017).

  40. Ligand Assisted Digestion and Formation of Monodisperse FeCoS2 Nanocrystals, Amitha Shetty, Avijit Saha, Mahima Makkar and Ranjani Viswanatha, Phys. Chem. Chem. Phys., 18, 25887- 25892 (2016).

  41. Understanding the Role of Surface Capping Ligands in Passivating the Quantum Dots Using Copper Dopants as Internal Sensor, G. Krishnamurthy Grandhi, Arunkumar M. and Ranjani Viswanatha, J. Phys. Chem. C, 120, 19785 - 19795 (2016).

  42. Core Shell to Doped Quantum Dots: Evolution of the Local Environment using XAFS, Avijit Saha, Soma Chattopadhyay, Tomohiro Shibata and Ranjani Viswanatha, J. Phys. Chem. C, 120, 18945-18951 (2016).

  43. Uniform Doping in Quantum Dots based Dilute Magnetic Semiconductor, Avijit Saha, Amitha Shetty, Pavan A.R., Soma Chattopadhyay, Tomohiro Shibata and Ranjani Viswanatha, J. Phys. Chem. Lett., 7, 2420- 2428 (2016).

  44. Effect of Transition Metal Dopants on the Optical and Magnetic Properties of Semiconductor Nanocrystals, Ranjani Viswanatha, Pramana.- J. Phys., 84, 1055-1064 (2015). 

  45. Cu Doping in Ligand Free CdS Nanocrystals: Conductivity and Electronic Structure Study, G. Krishnamurthy Grandhi, Swathi K, K. S. Narayan and Ranjani Viswanatha, J. Phys. Chem. Lett., 5, 2382 - 2389 (2014)

  46. The Curious Case of CdTe/CdS: Photoabsorption versus Photoemission, Avijit Saha, Soma Chattopadhyay, Tomohiro Shibata and Ranjani Viswanatha, J. Mat. Chem. C, 2, 3868 - 3872 (2014).

  47. Large Area Luminescent Solar Concentrators Based on Stokes-shift-engineered Nanocrystals in Mass Polymerized PMMA Matrix, Francesco Meinardi, Annalisa Colombo, Kirill Velizhanin, Roberto Simonutti, Monica Lorenzon, Luca beverina, Ranjani Viswanatha, Victor Klimov, and Sergio Brovelli, Nat. Photonics, 8, 392 - 399 (2014).

  48. Near-Unity Quantum Yield in Semiconducting Nanostructures: Structural Understanding Leading to Energy Efficient Applications, Avijit Saha, Kishore V. Chellappan, K. S. Narayan, Jay Ghatak, Ranjan Datta and Ranjani Viswanatha, J. Phys. Chem. Lett., 4, 3544-3549 (2013). Highlighted in C&E News. (http://cen.acs.org/articles/91/web/2013/10/ Understanding-Quantum-Dots-Inside.html)

  49. Tunable Infrared Phosphors Using Cu Doping in Semiconductor Nanocrystals: Surface Electronic Structure Evaluation, G. Krishnamurthy Grandhi and Ranjani Viswanatha, J. Phys. Chem. Lett., 4, 409-415 (2013).

  50. Optical Studies in Quantum Dots: A Review, Ranjani Viswanatha and Anshu Pandey, Spectroscopic Properties of Inorganic Materials and Compounds, 44, 123-155 (2013).

  51. Study of Surface and Bulk Electronic Structure of II-VI Semiconductor Nanocrystals using Cu as a Nanosensor, G. Krishnamurthy Grandhi, Renu Tomar and Ranjani Viswanatha, ACS Nano, 6, 9751-9763 (2012).

  52. Cu-doped ZnSe Nanocrystals: A Nanoscale Diluted Magnetic Semiconductor exhibiting Long-lived Photo-magnetization, Anshu Pandey, Sergio Brovelli, Ranjani Viswanatha, Liang Li, Jeffrey M. Pietryga, Victor I. Klimov and Scott Crooker, Nature Nanotech., 7, 792-797 (2012). Highlighted in Nature News and Views (http://www.nature.com/nnano/journal/v7/ n12/pdf/nnano.2012.216.pdf)

  53. Magnetic Properties of Fe/Cu co-doped ZnO Nanocrystals, Ranjani Viswanatha, Doron Naveh, James R. Chelikowsky, Leeor Kronik and D. D. Sarma, J. Phys. Chem. Lett., 3, 2009 - 2014 (2012).

  54. Tuning Radiative Recombination in Cu-doped Nanocrystals via Electrochemical Control of Surface Trapping, Sergio Brovelli, Christophe Galland, Ranjani Viswanatha and Victor I. Klimov, Nano Lett., 12, 4372 - 4379 (2012).

  55. Copper-Doped Inverted Core Shell Nanocrystals with Permanent Optically Active Holes, Ranjani. Viswanatha, Sergio. Brovelli, Anshu. Pandey, Scott. A. Crooker and Victor. I. Klimov, NanoLett., 11, 4753 (2011).

  56. Spin-polarized Mn2+ Emission from Mn-doped Colloidal Nanocrystals (Editor's Suggestion), Ranjani Viswanatha, Jeffrey M. Pietryga, Victor I. Klimov and Scott A. Crooker, Phys. Rev. Lett, 107, 067402 (2011).

  57. Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core-Shell Interface, Florencio Garcia-Santamaria, Sergio Brovelli, Ranjani Viswanatha, Jennifer A. Hollingsworth, Han. Htoon, Scott A. Crooker and Victor I. Klimov, Nano Lett., 11, 687 - 693 (2011).

  58. New Paradigm for Controlling Exciton Dynamics Via Engineered Electron-Hole Exchange Interaction, Sergio Brovelli, Richard D. Schaller, Scott A. Crooker, Florencio Garcia-Santamaria, Yongfen Chen, Ranjani Viswanatha, Jennifer A. Hollingsworth, Han. Htoon and Victor I. Klimov, Nat. Commun., 2, 280 (2011).

  59. Nano-engineered Electron-Hole Exchange Interaction Controls Exciton Dynamics in CoreÀShell Semiconductor Nanocrystals, Richard D Schaller, Scott A Crooker, Florencio García-Santamaría, Y Chen, Ranjani Viswanatha, Jennifer A Hollingsworth, Han Htoon and Victor I Klimov, Nature Comm., 2, 280 (2011)

  60. Growth Mechanism of Cadmium Sulfide Nanocrystals, Ranjani Viswanatha, Heinz Amenitsch, Sanjita Rani Santra, Sameer Sapra, Suwarna S. Datar, Yu Zhou, Saroj K. Nayak, Sanat K. Kumar and D. D. Sarma, J. Phys. Chem. Lett., 1, 304 - 308 (2010).

  61. Transferrable Orthogonal Tight-binding parameters for ZnS and CdS, Somesh Kr Bhattacharya, Prajakta A Deodhar, Ranjani Viswanatha and Anjali Kshirsagar, J. Phys. Condens. Matter, 22, 295304 (2010).

  62. Investigation of the Internal Heterostructure of Highly Luminescent Quantum Dot-Quantum Well Nanocrystals, Pralay K. Santra, Ranjani Viswanatha, Steve M. Daniels, Nigel L. Pickett, Jason M, Smith and D. D. Sarma, J. Am. Chem. Soc, 131, 470 - 477 (2009).

  63. Effect of Structural Modification on the Quantum-Size Effect in II–VI Semiconducting Nanocrystals, Ranjani Viswanatha and D. D. Sarma, Chem. Asian J., 4, 904 - 909 (2009).

  64. Temperature Dependence of “Elementary Processes” in Doping Semiconductor Nanocrystals, Dingan Chen, Ranjani Viswanatha, Grace L. Ong, Renguo Xie, Mahalingam Balasubramanian and Xiaogang Peng, J. Am. Chem. Soc, 131, 9333 - 9339 (2009).

  65. Self Assembly and Electronic Structure of ZnO Nanocrystals, Ranjani Viswanatha, Pralay K. Santra and D. D. Sarma, J. Cluster Sci, 20, 389 - 398 (2009).

  66. Magnetic and Structural Investigation of ZnSe Semiconductor Nanoparticles Doped with Isolated and Core-Concentrated Mn2+ Ions, Cristina Graf, Andreas Hoffmann, Thomas Ackermann, Christine Boeglin, Ranjani Viswanatha, Xiaogang Peng, Arantxa Fraile Rodríguez, Frithjof Nolting and Eckart Rühl, Adv. Funct. Mater, 19, 2501 - 2510 (2009).

  67. Shape Control of Doped Semiconductor Nanocrystals (d-Dots), Ranjani Viswanatha, David M. Bhattaglia, Mark E. Curtis, Tetsuya D. Mishima, Matthew B. Johnson and Xiaogang Peng, Nanoresearch, 1, 138 - 144 (2008).

  68. Growth Kinetics of ZnO Nanocrystals: A Few Surprises, Ranjani Viswanatha, Heinz Amenitsch and D. D. Sarma, J. Am. Chem. Soc, 129, 4470 - 4475 (2007).

  69. Growth of Semiconducting Nanocrystals of CdS and ZnS, Ranjani Viswanatha, Sameer Sapra, Heinz Amenitsch, Barbara Satori and D. D. Sarma, J. Nanosci. Nanotech, 7, 1726 - 1729 (2007).

  70. Growth Mechanism of Nanocrystals in Solution: ZnO, A Case Study, Ranjani Viswanatha, Pralay K. Santra, Chandan Dasgupta and D. D. Sarma, Phys. Rev. Lett, 98, 255501 (2007).

  71. EXAFS Studies of Nanocrystals of Zn1-xMnxO: A Dilute Magnetic Semiconductor Oxide System, Soma Chattopadhyay, Key SD, Shibata T, Ranjani Viswanatha, Mahalingam Balasubramanian, Stoupin S, Carlo U. Segre and D. D. Sarma, AIP Conf. Proc., 882, 809 - 811 (2007).

  72. Nanomaterials Chemistry, Ranjani Viswanatha  and D D Sarma, (2007).

  73. Growth of Nanocrystals in Solution, Ranjani Viswanatha and D. D. Sarma, Nanomaterials Chemistry: Recent Developments and New Directions, 139 (2007).

  74. Blue-emitting Copper-doped Zinc Oxide Nanocrystals, Ranjani Viswanatha, S Chakraborty, S Basu and D. D. Sarma, J. Phys. Chem. B (Lett), 110, 22310 - 22312 (2006).

  75. Study of the Growth of Capped ZnO Nanocrystals: A Route to Rational Synthesis, Ranjani Viswanatha and D. D. Sarma, Chem-Euro. J, 12, 180 - 186 (2006).

  76. Electronic Structure of and Quantum Size Effect in III-V and II-VI Semiconducting Nanocrystals Using a Realistic Tight Binding Approach, Ranjani Viswanatha, Sameer Sapra, Tanusri Saha-Dasgupta and D. D. Sarma, Phys. Rev. B, 72, 045333 (2005).

  77. Self-organization of Polyaniline Nanorods: Towards Achieving a Higher Conductivity, Debangshu Chaudhuri, Suwarna S. Datar, Ranjani Viswanatha, D. D. Sarma and Heinz Amenitsch, Appl. Phys. Lett, 87, 093117 (2005).

  78. Magnetic Properties of Doped II-VI Semiconductor Nanocrystals, D. D. Sarma, Ranjani Viswanatha, Sameer Sapra, Ankita Prakash and M. Garcia-Hernandez, J. Nanosci. Nanotech, 5, 1503 - 1508 (2005).

  79. Electronic Structure of Semiconductor Nanocrystals: An Accurate Tight-binding Description, Sameer Sapra, Ranjani Viswanatha and D. D. Sarma, Int. J. Nanosci., 4, 893 - 899 (2005).

  80. Understanding the Quantum Size Effects in ZnO Nanocrystals, Ranjani Viswanatha, Sameer Sapra, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, J. Mater. Chem, 14, 661 - 668 (2004).

  81. Synthesis and Characterization of Mn-doped ZnO Nanocrystals, Ranjani Viswanatha, Sameer Sapra, Subhra Sen Gupta, B. Satpati, P. V. Satyam, B. N. Dev and D. D. Sarma, J. Phys. Chem. B, 108, 6303 - 6310 (2004).

  82. An Accurate Description of Quantum Size Effects in InP Nanocrystallites Over a Wide Range of Sizes, Sameer Sapra, Ranjani Viswanatha and D. D. Sarma, J. Physics D: App. Phys, 36, 1595 - 1598 (2003).

bottom of page